
CSCC24 Week 1 Notes
1

Introduction:
- Haskell is a widely used purely functional language. Functional programming is based

on mathematical functions.
- Haskell is a lazy language. By lazy, we mean that Haskell won't evaluate any expression

without any reason. When the evaluation engine finds that an expression needs to be
evaluated, then it creates a thunk data structure to collect all the required information for
that specific evaluation and a pointer to that thunk data structure. The evaluation engine
will start working only when it is required to evaluate that specific expression. As a
consequence, in Haskell, many short-circuiting operators and control constructs are
user-definable whereas in other languages you’re stuck with what’s hardwired.
E.g. Suppose we define f(x) = 4. Now, what does f(1/0) equal to?
Most languages will do call by value, meaning that they will evaluate 1/0 first, which will
give them an error. However, because Haskell is lazy, it doesn't evaluate 1/0 yet and will
just plug in as-is. Oh x is unused, so f(1/0) = 4.
In the pictures below, it shows a Python program and a Haskell program that tries to do
the same thing, namely, create a function and have it return 4 and then call the function
with the argument 1/0. In Python, this causes an error while in Haskell, it doesn’t.

- A Haskell application is nothing but a series of functions.
- In conventional programming language, we need to define a series of variables along

with their type. In contrast, Haskell is a strictly typed language. This means that the
Haskell compiler is intelligent enough to figure out the type of the variable declared,
hence we need not explicitly mention the type of the variable used.

Comments:
- Comments in Haskell are denoted as:

1. Single line: --
2. Multi line: {- .. -}

CSCC24 Week 1 Notes
2

Do Notation:
- A do-block combines together two or more actions into a single action.
- Note: In a do-block, you don’t use the keyword “in”.

Variables:
- The left-hand side is the name of the value. Furthermore, = is used to declare the

expression that is bound to the name on the left side (value definition).
E.g. a = 3

- Haskell variables are immutable.
E.g. If you do something like:
a = 3
a = a + 1
print(a)
You will get an error or your print(a) will not run.

- We can name part of the computation using let or where.
- There are 2 mains ways let is used in Haskell:

1. This form is a let-expression, which is shown below:
let [<definition>] in <expression> is an expression and can be used anywhere.
E.g. let x = 5 in x + 1

2. This form is a let-statement. This form is only used inside of do-block, and does
not use in.
E.g.

Note: in must be used in conjecture with let. It has no meaning on its own.

- where is part of a definition and is special syntax. where is bound to a surrounding
syntactic construct, like the pattern matching line of a function definition.
E.g. y = x + 1 where x = 5

- E.g. Consider the code and output below:

https://wiki.haskell.org/index.php?title=Pattern_matching&action=edit&redlink=1

CSCC24 Week 1 Notes
3

putStr, putStrLn and print:
- putStr will print a string without a newline character at the end.
- putStrLn will print a string with a newline character at the end.
- print will just print whatever is in the parentheses.
- E.g. Consider the code and output below:

Basic Data Types:

1. Numbers:
- Haskell is intelligent enough to decode some number as a number. Therefore, you need

not mention its type externally as we usually do in case of other programing languages.

CSCC24 Week 1 Notes
4

- E.g. Consider the code and output below:

- Note: :t is to include the specific type related to the inputs.
- E.g. Consider the code and output below:

Notice how it shows the type of the input.

2. Characters:
- Like numbers, Haskell can intelligently identify a character given in as an input to it.
- E.g. Consider the code and output below:

Note: The error message "<interactive>:1:1: Not in scope: `a'" means that the Haskell
compiler is warning us that it is not able to recognize your input. Haskell is a type of
language where everything is represented using a number.

CSCC24 Week 1 Notes
5

3. String:
- A string is nothing but a collection of characters. There is no specific syntax for using

string, but Haskell follows the conventional style of representing a string with double
quotation.

- E.g. Consider the code and output below:

- Note: Strings are just lists of characters, as shown below:

4. Boolean:
- Haskell has 2 boolean values: True and False.
- E.g. Consider the code and output below:

CSCC24 Week 1 Notes
6

- Note: True and False must have the T/F capitalized. true and false will get you errors, as
shown below:

5. List:
- A List is a collection of the same data type separated by comma.

E.g. [‘a’,’b’,’c’] is a list of characters.
E.g. [1,2,3] is a list of numbers.

- Like other data types, you do not need to declare a List as a List. Haskell is intelligent
enough to decode your input by looking at the syntax used in the expression.

- Lists in Haskell are homogeneous in nature, which means they won’t allow you to
declare a list of different kinds of data type.

- E.g. Consider the code and output below:

- To get the length of a list, L, you can do length L.

E.g. Consider the code and output below:

CSCC24 Week 1 Notes
7

- To get the reverse of a list, L, you can do reverse L.

E.g. Consider the code and output below:

- To get the nth index of a list, L, you can do L !! n.

Note: In Haskell, list indexes start at 0. So, L !! 0 gets the first element, L !! 1 gets the
second element, and so on.
E.g. Consider the code and output below:

CSCC24 Week 1 Notes
8

- Note: head L returns the first element of a list while last L returns the last element of a
list.
E.g. Consider the code and output below:

- To add elements to the start of a list, L, you can do element1 : element2 : … : L.

This is called consing. In fact, Haskell builds all lists this way by consing all elements to
the empty list, []. The commas-and-brackets notation are just syntactic sugar. So
[1,2,3,4,5] is exactly equivalent to 1:2:3:4:5:[].
E.g. Consider the code and output below:

CSCC24 Week 1 Notes
9

- To add elements to the end of a list, L, you can do L ++ [element1, element2, …].
E.g. Consider the code and output below:

- To join 2 lists, L1 and L2, together, you can do L1 ++ L2.

E.g. Consider the code and output below:

- To Delete the first N elements from a list, L, you can do drop N L.

E.g. Consider the code and output below:

CSCC24 Week 1 Notes
10

- Note: To remove the first element of a list, L, you can do tail L. To remove the last
element of a list, L, you can do init L.
E.g. Consider the code and output below:

- To get the first N elements of a list, L, you can do take N L.

Note: The output will be returned as a list.
E.g. Consider the code and output below:

- To split a list, L, at the Nth position, you can do splitAt N L.

E.g. Consider the code and output below:

- To insert an element into the middle of a list, L, you have to split the list into two smaller

lists, put the new element in the middle, and then join everything back together. There is
no built-in function to do so.
Syntax: let (b,c) = splitAt n a in b ++ [new_element] ++ c
E.g. Consider the code and output below:

- To delete an element into the middle of a list, L, you have to split the list in two, remove

the element from one list, and then join them back together. There is no built-in function
to do so.
Syntax: let (b, c) = splitAt 2 a in b ++ (tail c)
E.g. Consider the code and output below:

CSCC24 Week 1 Notes
11

6. List Comprehension:
- List comprehension is the process of generating a list using mathematical expression.

Parametric Polymorphism:
- A value is polymorphic if there is more than one type it can have. Polymorphism is

widespread in Haskell and is a key feature of its type system.
- Most polymorphism in Haskell falls into one of two broad categories: parametric

polymorphism and ad-hoc polymorphism.
- Parametric polymorphism refers to when the type of a value contains one or more

(unconstrained) type variables, so that the value may adopt any type that results from
substituting those variables with concrete types.

- In Haskell, this means any type in which a type variable, denoted by a name in a type
beginning with a lowercase letter, appears without constraints (i.e. does not appear to
the left of a =>). In Java and some similar languages, generics (roughly speaking) fill this
role.

- For example, the function id :: a -> a contains an unconstrained type variable a in its
type, and so can be used in a context requiring Char -> Char or Integer -> Integer or any
of a literally infinite list of other possibilities. Likewise, the empty list [] :: [a] belongs to
every list type, and the polymorphic function map :: (a -> b) -> [a] -> [b] may operate on
any function type. Note, however, that if a single type variable appears multiple times, it
must take the same type everywhere it appears, so e.g. the result type of id must be the
same as the argument type, and the input and output types of the function given to map
must match up with the list types.

- Since a parametrically polymorphic value does not "know" anything about the
unconstrained type variables, it must behave the same regardless of its type. This is a
somewhat limiting but extremely useful property known as parametricity.

- E.g.

https://wiki.haskell.org/Polymorphism#Parametric_polymorphism
https://wiki.haskell.org/Polymorphism#Ad-hoc_polymorphism

CSCC24 Week 1 Notes
12

Functions:
- Syntax: function_name argument(s) = function definition

The function definition is a formula that uses the argument in context with other
already defined terms.
E.g.
area r = pi * r ^ 2 Note: Here, r is an argument.

increment n = n + 1 Note: Here, n is an argument.

- Note: Call functions without parentheses.
- Note: Function call is left associative.
- Note: Function call takes precedence over operators.
- Note: Functions can accept more than one parameter.
- Note: In Haskell functions are first class values. That means they can be put in

variables, passed and returned from functions, etc. You can also have function
composition. I.e. You have a function that takes two functions and a value, applies the
second function to the value and then applies the first function to the result.

- We can supply only some of the arguments to a function. If we have a function that
takes N arguments and we supply K arguments, we'll get a function that takes the
remaining (N - K) arguments.
E.g. Consider the code and output below:

Here, we have a function, func1, that takes 3 arguments and adds them up. In this
case, N = 3. However, we only supply 2 arguments (1 and 2), so in this case, K = 2 and
we get a new function, func2, that takes (3-2 or 1) argument. When we enter the last
argument for func2, it gives the sum of the 3 arguments (The first 2 arguments were
passed to func1 and the 3rd argument was passed to func2.)

- We can combine functions, too.

CSCC24 Week 1 Notes
13

- E.g. Consider the code and output below:

Here, I created a function called areaRectangle that takes in 2 arguments, a length and
width, and gives back their product. Then, I created another function called areaSquare
that takes in 1 argument, a length, and gives back s2, using areaRectangle to calculate
it. Lastly, I created a third function called areaTriangle that takes 2 arguments, a base
and height, and gives back the result of base*height/2, using areaRectangle to calculate
base*height.

- E.g. Consider the code and output below:

Here, I created a function called double that takes an argument and gives back its
double. Then, I created a function called quadruple that takes an argument and gives
back its quadruple using the double function twice. Notice that I needed brackets for
double (double x). When I tried doing double double x, it gave me an error.

- We can give values a type signature using ::. Furthermore, we use -> to denote the type
of a function from one type to another type. Note: -> is right associative.

CSCC24 Week 1 Notes
14

- E.g. Consider the code and output below:

In the first picture, I didn’t use ::. Hence, when I did double 2.4 and double 5.6, I didn’t
get an error. However, in the second picture, I did double :: Int -> Int. This means that
the input must be of type Int. Hence, when I do double 2.3, it gives me an error.

